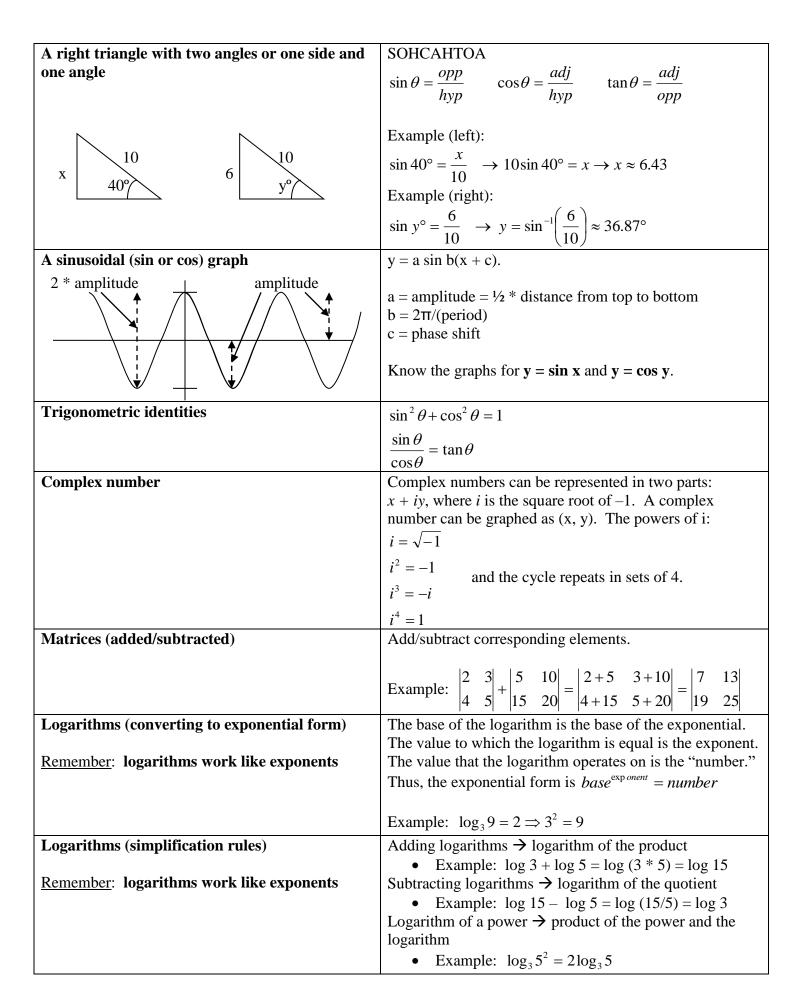

If You See	You Should Think			
	Straight angle = 180°. Also, the sum of the two angles on each side of the straight line = 180° (they're supplementary).			
	Right angle = 90° . Also, the sum of the two angles that make up the right angle = 90° (they're <u>complementary</u>).			
Two parallel lines cut by a transversal line:	If you know one angle you know all 8 angles.			
Crossing lines:	Vertical angles – the pairs of opposite angles are equal. The adjacent angles are supplementary (sum to 180°).			
A triangle with angles marked:	The sum of the angles in a triangle = 180° .			
A triangle with two equal angles marked:	Isosceles triangle – the two sides opposite the two angles are equal.			
A triangle with two equal sides marked:	Isosceles triangle – the two angles opposite the two sides are equal.			
A right triangle with two sides known: 5	Pythagorean Theorem – the square of one short side + the square of the other short side = the square of the hypotenuse. Also, look for 3-4-5, 6-8-10, and 5-12-13.			



Difference of squares: $x^2 - y^2$	Factor as $(x + y) (x - y)$.			
-				
• $x^2 - 4 = (x + 2)(x - 2)$				
$\bullet 4y^2 - 9z^4 = (2y + 3z^2)(2y - 3z^2)$				
The problem statement mentions "integer"	You may be able to <u>list out (or draw) all possible integer</u>			
The proofers statement mentions arreger	choices (this makes the problem easier!).			
What are all the integer coordinates that lie				
within the rectangle with corners at $(-2, 1)$,				
(2, 1), (2, -1), (-2, -1)?				
Odd/even problem statement	Try substituting odd/even <u>test values</u> .			
• If x is even and y is odd, is xy ² odd or	In the example at left, substitute $x = 2$, $y = 1$; then $xy^2 =$			
even?	$2(1)^2 = 2$ (even).			
Positive/negative problem statement	Try substituting positive/negative <u>test values</u> .			
• If x is positive and y is negative, is xy ²	In the example at left, substitute $x = 1$,			
positive or negative?	$y = -1$; then $xy^2 = 1$ (-1) ² = 1 (positive).			
1 0				
Problem statement referencing "divisibility"	Try substituting appropriate test values.			
If x is divisible by 3 and y is divisible by 2, is xy	In the example at left, substitute $x = 3$,			
divisible by 6?	y = 4; then $xy = 3(4) = 12$, which is divisible by 6.			
	Confirm with $x = 6$ and $y = 4$.			
Problem statement referencing "remainder"	Try listing out candidate test values that meet the criterion.			
If 5 consecutive integers are divided by 3, the	Citerion.			
remainders are 1, 2, 0, 1, and 2. Which of the	In the example at left, start by finding the first element.			
integers is divisible by 3?	For example, 4 divided by 3 has a remainder of 1. The 5			
	consecutive integers are then 4, 5, 6, 7, and 8. The third			
Inequality: "between" two values	item in the list is divisible by 3. You can express the inequality in two ways:			
inequality. Detween two values	 x - midpoint ≤ "radius" 			
-2 +4	• $midpoint - radius \le x \le midpoint + radius$			
				
	In the example to left,			
Inequality: "outside" two values	$ x-1 \le 3$ or $-2 \le x \le 4$			
inequality. Outside two values	You can express the inequality in two ways: • x − midpoint ≥ "radius"			
-2 +4	 x ≤ midpoint − radius and 			
←	$x \ge midpoint + radius$			
	To the evenue to left			
	In the example to left, $ x-1 \ge 3$ or $x \le -2$ and $x \ge 4$			
The problem statement asks for a "non-simple	Look for a way of obtaining the non-simple result			
result"	directly from the inputs (with minimal computation).			
. If w 2m 5 1 - 4 2	In the exemple at left mate that			
• If $x + 2y = 5$, what is $2x + 4y$?	In the example at left, note that $2x + 4y = 2(x + 2y)$, so $2x + 4y = 2$ (5) = 10.			
	2x + ij - 2(x + 2j), so $2x + ij - 2(3) - 10$.			

This work is licensed by H. Carey Gire under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Copying allowed for non-commercial purposes. Please attribute if materials modified.

The problem statement talks about data for more than one time period (steps, days, years, etc.).	Set up the data in a table. Include the time period as one column.				
The original price of a shirt is decreased	In the example	e at left, set up	a table (and pic	k an original	
10%. Later, it is decreased an additional	price that's eas	-	(T		
20%. What is the net percent decrease	Time period	Price	Change]	
from its original price?	0	\$100	-10%	1	
8	1	\$90	-20%	-	
	2	\$72		1	
$\mathbf{x} * \mathbf{y} * \mathbf{z} \neq 0$	None of x, y, or $z = 0$.				
$\mathbf{x} * \mathbf{y} * \mathbf{z} = 0$	One or more of x, y, or $z = 0$.				
Complicated-looking arithmetic	Try to simplify.				
•		_			
3 5 7 9 11	In the example at left, you can cancel all numbers except				
$\bullet \frac{3}{5} \times \frac{5}{7} \times \frac{7}{9} \times \frac{9}{11} \times \frac{11}{13} = ?$					
	3 and 13. The answer is $\frac{3}{13}$.				
Simultaneous equations	There are 3 approaches (on the SAT) for solving (all with				
1	the plan to <u>eliminate</u> one variable):				
What are x and y if	• Add the equations				
j	 Subtract the equations 				
x + y = 3 and		-		r	
x-y=5	• Substitute one equation into the other In the example at left, note that y and –y are opposites.				
	So, add them to get $2x = 8$. Then, $x = 4$. Substitute into				
	the other equation to get $y = -1$.				
Simultaneous equations with complicated result	Same idea as above, but look for ways of <u>directly</u>				
•	obtaining the result:				
What is $2x + 3y$ if	Add the equations				
	Subtract the equations				
x + y = 3 and	Substitute one equation into the other				
x + 2y = 5	In the example at left, note that if you add left sides of				
	the two equations you get $2x + 3y$ (the complicated result				
	that was asked	•			
Opposites (e.g., $x - 1$ and $1 - x$) in the same	See if you can replace one of the two with its opposite.				
problem statement	That may simplify the equation.				
• What is $(3x + y)(x - y) + (3x + y)(y - x)$?					
	Substituting into the 2 nd half of the problem gives:				
	, , ,	(3x + y) (x - y) - (3x + y) (x - y) = 0. There is no need			
	to multiply out all of the terms.				
Relationship between two or more items (with	Ratio/Proportions				
different units) Eventual 1 25 inches relates to 30 miles; how	20 miles				
Example: 1.25 inches relates to 30 miles; how many miles is 3.75 inches?	$\frac{30 \text{ miles}}{1.25 \text{ inches}} = \frac{x \text{ miles}}{3.75 \text{ inches}} \Rightarrow x = 90 \text{ miles}$				
many miles is 3.73 menes?	1.25 inches 3.75 inches				
Least common multiple or denominator	Factor each number into its prime factors. Look for the				
• What is the least common multiple of 25, 8,					
and 30?	together to get the least common multiple.				
		-2 0 -2			
1	Example: $25 = 5^2$, $8 = 2^3$, $10 = 2 * 3 * 5$. The least common multiple = $5^2 * 2^3 * 3 = 600$.				
	Example: 23	-1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	2	ne reast	

