
If You See	You Should Think
A polynomial expression with two variables: with one variable of degree 1 and the other variable of degree 2	This is a parabola . Put the equation in one of the two forms: $1 + (1 + 1)^2 = (1 + 1)^2$
For example, $6y + x^2 = 12$	$4p(y-k) = (x - h)^2 (\underline{opens up}, \text{ if } p \text{ is positive or} \\ \underline{opens down} \text{ if } p \text{ is negative})$
	$\frac{\text{or}}{4p(x-h)} = (y-h)^2 (\frac{\text{opens right}}{\text{opens left}}, \text{ if p is positive or} \\ \frac{\text{opens left}}{\text{opens left}} \text{ if p is negative})$
	Here, p is the distance from the vertex (h, k) to the focus (inside the concave part of the parabola) and in the opposite direction to the directrix line . The directrix line has equation $y = k-p$ for the first case above and $x = h-p$ for the 2 nd case.
	In the example to the left, rearrange values to give $6(y-2) = x^2$, so that $p = 6/4 = 3/2$ and the vertex is at (0, 2). The focus is at $(0, 2 + 3/2) = (0, 7/2)$. The directrix has equation $y = 2 - 3/2$ or $y = \frac{1}{2}$.
A polynomial expression with two variables: with both variables of degree 2 and with equal coefficients for each 2 nd -degree variable.	This is a circle . The equation for the circle is in the form: $(x - h)^2 + (y - k)^2 = r^2$, where (h, k) is the center of the circle, and r is the radius . If the circle equation has 1 st -degree terms (x or y), then
For example, $2(x - 1)^2 + 2(y + 1)^2 = 8$	complete the square to put in standard form. In the example to the left, first divide each side of the equation by 2. Then, the center is at $(1, -1)$ and the radius is 2.
A polynomial expression with two variables: with both variables of degree 2 and with different coefficients (of the same sign) for each	This is an ellipse . The equation for the ellipse is in the form: $(x-h)^2 + (y-k)^2 = 1$ where $(k-k)$
2 nd -degree variable. For example, $(x - 1)^2 + \frac{25}{16} (y + 1)^2 = 25$	is the center of the ellipse, and a and b are the lengths of half of the two axes. The larger of a or b defines the major axis . The smaller of a or b defines the minor axis . The two foci are at an
	equal distance c from the center, where (if $a > b$), $c^2 + b^2 = a^2$ or (if $a < b$) $c^2 + a^2 = b^2$. If the ellipse equation has 1 st -degree terms (x or y), then complete the square to put in standard form.
	In the example, first divide each side of the equation by 25. Then, the center is at $(1, -1)$, a = 5, b = 4, and c = 3. The foci are at $(-2, -1)$ and $(4, -1)$. The major axis is parallel to the x-axis (the larger value a ² divides the $(x - h)^2$ term).

This work is licensed by H. Carey Gire under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Copying allowed for non-commercial purposes. Please attribute if materials modified.

