If You See	You Should Think
A polynomial function:	The domain of a polynomial is <u>all real numbers</u> .
For example, $f(x) = 2x^3 + 3x^2 - 4$	The range of a polynomial depends on the
	function – if not obvious, then graph it.
A quadratic equation:	Either factor or use the quadratic formula to get
For example, $x^2 + 2x + 3 = 0$	solutions. For a 2 nd -degree equation (quadratic)
	there are no more than 2 solutions (sometimes
	only one distinct solution and sometime none).
	In this example, the equation factors in to
	(x + 2)(x + 1) = 0 Then the key point: any time
	two numbers a and b are multiplied and give 0
	(ab = 0), the either $a = 0$, $b = 0$, or both. In this
	case this gives two solutions: $x = -1$ and $x = -2$.
A general polynomial function with	Use the constraints to determine A, B, and C.
constraints:	
For example, $P(x) = Ax^2 + Bx + C$ of degree 2	Use $P(0) = -1$ to determine C. Use the two
with two roots/zeroes at -1 and $\frac{1}{2}$ and $P(0) = -1$	roots/zeroes to determine A and B.
	In this example, $\mathbf{P}(0) = \mathbf{A}(0)2 + \mathbf{P}(0) + \mathbf{C} = -1$
	In this example, $F(0) = A(0)2 + B(0) + C = -1$ gives $C = -1$. The two roots/zeroes means that
	$P(-1) = 0$ and $P(\frac{1}{2}) = 0$. For the first case, this
	gives $P(-1) = A(-1)^2 + B(-1) + C = 0$, which
	yields the equation $A - B - 1 = 0$. The other
	root/zero gives $A/4 + B/2 - 1 = 0$. Solving these
	two simultaneous equations gives $\underline{A} = 2$ and $\underline{B} =$
	<u>1</u> . Therefore, $\underline{P(x)} = 2x^2 + x - 1$.
A polynomial expression with two variables:	This is a parabola . Put the equation in one of the
with one variable of degree 1 and the other	two forms:
variable of degree 2	$(4n(y + k) - (y + h)^2)$ (on any up if n is positive or
For example, $6y + x^2 - 12$	(4p(y - k) - (x - n)) (<u>opens down if n is negative</u>)
	or
OR +	$4p(x-h) = (y-h)^2$ (opens right, if p is positive or
	<u>opens left</u> if p is negative)
	Here, p is the distance from the vertex (h, k) to
	the focus (inside the concave part of the parabola)
	and in the opposite direction to the directrix line .
	I ne directrix line has equation $y = k-p$ for the first
	case above and $x = n - p$ for the 2 case.
	In the example to the left rearrange values to give
	$6(y-2) = x^2$, so that $p = 6/4 = 3/2$ and the vertex
	is at (0, 2). The focus is at $(0, 2 + 3/2) = (0, 7/2)$.
	The directrix has equation $y = 2 - 3/2$ or $y = \frac{1}{2}$.

This work is licensed by H. Carey Gire under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Copying allowed for non-commercial purposes. Please attribute if materials modified.

If You See	You Should Think
A polynomial expression with two variables:	This is a circle . The equation for the circle is in
with both variables of degree 2 and with equal	the form: $(x - h)^2 + (y - k)^2 = r^2$, where (h, k) is
coefficients for each 2 nd -degree variable.	the center of the circle, and r is the radius . If the
	circle equation has 1^{st} -degree terms (x or y), then
For example, $2(x-1)^2 + 2(y+1)^2 = 8$	complete the square to put in standard form.
	In the example to the left first divide each side of
	the equation by 2. Then the center is at $(1 - 1)$
	and the radius is 2
A nalynamial avarassian with two variables:	This is an allinsa . The equation for the allinsa is
with both variables of degree 2 and with	This is an empse . The equation for the empse is $(1)^2 - (1)^2$
different coefficients (of the same sign) for each	in the form: $\frac{(x-h)}{2} + \frac{(y-k)}{2} = 1$, where (h, k)
2 nd degree variable	a^2 b^2
2 -degree variable.	is the center of the ellipse, and a and b are the
25	lengths of half of the two axes. The larger of a or
For example, $(x - 1)^2 + \frac{23}{3}(y + 1)^2 = 25$	b defines the major axis . The smaller of a or b
16	defines the minor axis . The two foci are at an
	equal distance c from the center, where (if $a > b$),
	$c^{2} + b^{2} = a^{2}$ or (if $a < b$) $c^{2} + a^{2} = b^{2}$. If the ellipse
	equation has 1^{st} -degree terms (x or y), then
	complete the square to put in standard form.
	In the example, first divide each side of the
	equation by 25. Then, the center is at $(1, -1)$, a =
	5, b = 4, and c = 3. The foci are at $(-2, -1)$ and $(4, -2)$
	-1). The major axis is parallel to the x-axis (the
	larger value a^2 divides the $(x - h)^2$ term).
A polynomial expression with two variables:	This is a hyperbola . It has two branches
with both variables of degree 2 and with	(curves). The equation for the hyperbola is either:
different coefficients (of different signs) for	$(x-h)^2 (y-k)^2 (y-k)^2 (x-h)^2$
each 2 nd -degree variable.	$\frac{a^2}{a^2} - \frac{a^2}{b^2} = 1$ or $\frac{a^2}{a^2} - \frac{a^2}{b^2} = 1$,
	a b a b
	hyperbola 2a is the distance between the vertices
	and 2b is the distance between the co-vertices
	The two foci are at an equal distance c from the
	center, where $c^2 - a^2 + b^2$. If the hyperbola
	equation has 1^{st} -degree terms (y or y) then
	complete the square to put in standard form. If the
	$(x - h)^2$ term comes first the hyperbola opens to
	the right and left. If the $(y - k)^2$ term comes first
h h	the hyperbola opens up and down
The asymptotes are $y = -\frac{b}{x}$ and $y = -\frac{b}{x}$	In the example equation to the left first divide
a a	each side of the equation by 9 Then the origin is
(left) or $v = \frac{a}{x}$ and $v = -\frac{a}{x}$ (right).	at $(1 - 1)$ a = 3 b = 4 and c = 5. The foci are at
b b b	(-4, -1) and $(6, -1)$ The hyperbola opens parallel
	to the x-axis (opens right and left) The
For example $(x = 1)^2 = 9$ $(x + 1)^2 = 0$	4 4
FOR example , $(x - 1)^2 - \frac{1}{16}(y + 1)^2 = 9$	asymptotes are $y = \frac{1}{2}x$ and $y = -\frac{1}{2}x$.
10	3 3

This work is licensed by H. Carey Gire under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Copying allowed for non-commercial purposes. Please attribute if materials modified.

You Should Think
The domain of a radical function with an <u>even</u>
<u>root</u> is all real numbers such that the radicand
(the part under the radical sign) is ≥ 0 . The
range of the square root function $y = \sqrt{x}$ is all
real numbers ≥ 0 . Any number added to or
subtracted from the square root changes the range.
In this example, $x + 3 \ge 0$ implies that $x \ge -3$.
These values of x make up the domain . The
range of $f(x)$ in this example is all real numbers
$\geq -1.$
The domain of a radical function with an odd root
is all real numbers. The range is all real numbers.
Simplify as much as possible.
In this example, $\sqrt{18} = \sqrt{9 \cdot 2} = \sqrt{9 \cdot \sqrt{2}} = 3\sqrt{2}$
Simplify as much as possible. Usually, first do
the operation (usually the <u>root</u>) that makes the
problem simpler. $2 [-1]^2$
In this example, $8^{\frac{2}{3}} = \left (8)^{\frac{1}{3}} \right = [2]^2 = 4$
Note: the exponent applies only to the item to its
immediate left.
A standard technique is to raise each side of the
equation to the same power, removing the radical sign. You must check for extraneous (invalid)
solutions.
In this example, squaring each side gives $4(2 - x)$
$= (x - 2)^2$. Solving, gives $x = 2$ and -2 . Plugging
these back into the original equation shows that $x = -2$ is not a valid solution (extraneous). So the
-2 is not a value solution (extraheous). So, the only solution is $x = 2$.

This work is licensed by H. Carey Gire under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Copying allowed for non-commercial purposes. Please attribute if materials modified.

If You See	You Should Think
A rational function (with an variable in the denominator):	The domain of a rational function is all real numbers such that the denominator is $\neq 0$. A value of x where the denominator is 0 is called an
For example, $f(x) = \frac{1}{x-1}$	excluded value.
	The range of a rational function depends on the function – if not obvious, then <u>graph it</u> .
	Vertical asymptotes may occur at each excluded value . The asymptotes are <u>equations of lines</u> of the form $x = a$, where a is one of the excluded values. In this example, there is one vertical asymptote with equation $\underline{x = 1}$.
↓↓	The horizontal asymptote is the <u>equation of a</u> <u>line</u> toward which the function approaches for very large x and very small (large negative) x. In this example, the horizontal asymptote is the x- axis, $y = 0$.
A rational expression: For example, $\frac{x-1}{x+1} + \frac{2}{x+1}$	Realize that any rational expression works just like a fraction : you <u>add, subtract, multiply,</u> <u>divide, and simplify</u> them using the same basic rules.
	In the example, there is already a least common denominator, so add the numerators and simplify: = $\frac{(x-1)+2}{x+1} = \frac{x+1}{x+1} = 1$
An exponential function:	The domain of an exponential function is all real
For example, $f(x) = e^{2x}$ or $g(x) = 2^{-x} + 1$	numbers. The range of an exponential function is generally all real numbers ≥ 0 , but depends on the function (where constants are added or subtracted from the exponential part) – if not obvious, then graph it.
	The horizontal asymptote is the <u>equation of a</u> <u>line</u> toward which the function approaches for very small (large negative) x (for positive exponents) or very large x (for negative exponents). In this example, the horizontal asymptote for $f(x)$ is the x-axis, $y = 0$, while the
The function $f(x) = b \cdot a^x$ is a growth function if $a > 1$. It is a decay function if $a < 1$.	horizontal asymptote for $g(x)$ is $y = 1$ (the exponential part goes to 0 as x gets very large).
The function $f(x) = b = x$ is a growth	Examples: $I(x) = 2^{-1}$ is a growth function. $\sigma(x) = 2^{-x}$ is a decay function
function if $a < 1$. It is a decay function if $a > 1$	$(1)^x$
1.	$h(x) = \left(\frac{1}{2}\right)$ is a decay function .

This work is licensed by H. Carey Gire under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Copying allowed for non-commercial purposes. Please attribute if materials modified.

If You See	You Should Think
An exponential expression: For example: $2^2 * 2^3 = 2^{2+3} = 2^5$	You must remember each of the exponent rules shown in the examples to the left. You can at least remember how to use a simple example to recreate the rule if you forget.
$\frac{2^{5}}{2^{2}} = 2^{5-2} = 2^{3}$ $(2^{2})^{3} = 2^{2^{*3}} = 2^{6}$ $(\frac{5}{4})^{3} = \frac{5^{3}}{4^{3}}$ $5^{-2} = \frac{1}{5^{2}}$ $2^{\frac{2}{3}} = \sqrt[3]{2^{2}}$	For example, for the first rule, put in an intermediate step: $2^2 * 2^3 = (2*2)*(2*2*2) = 2^5$; so, when you <u>multiply</u> two exponent expressions with the <u>same</u> base, then you <u>add</u> the exponents.
An exponential equation : For example: $2^{x-3} = 4^{x+1}$	A standard technique is to transform all bases to use a standard base, using the standard exponential rules. For example, in the example at left, change 4 into 2^2 . That results in an equation $2^{x-3} = 2^{2x+2}$.
	Because the same base (2) is raised to two different exponents but gives the same result, the two exponents must be equal. So, $x - 3 = 2x + 2$, which results in $x = -5$.
A special exponential function: Growth function : $N = N_0 e^{rt}$, where N is the	Each of these functions is in general form. The task is usually to find the particular (specific) function, where you find the value of r.
population at time t, N_0 is the initial population at t = 0, r = the rate of growth (positive r) or decline (negative r), and t is the time (in whatever units are needed for the problem)	For the growth function , you are usually given the initial population N_0 at $t = 0$ and the final population N at some later time $t = t_1$. You plug in those values to find out the specific value of r.
Compound interest function (continuous) : $A = Pe^{rt}$, where A is the final principal (amount of money), P is the initial principal, r is the interest rate, and t is the time. Compound interest function (periodic) : $A = P(1 - \frac{r}{n})^{nt}$, where A, P, r, and t are as above, and n is the number of compoundings per veer	For the compound interest function , you are usually given the initial principal P and the rate r, and are asked to find the final principal at some time $t = t_1$. You plug in those values to find A. For periodic compound interest, you'll also be told n (e.g., if there is annual compounding, $n = 1$; if there is monthly compounding, $n = 12$; if there is quarterly compounding, $n = 4$).

This work is licensed by H. Carey Gire under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Copying allowed for non-commercial purposes. Please attribute if materials modified.

If You See	You Should Think
A logarithmic function: For example, $f(x) = log(x-1)$	The logarithm function operates only on real numbers ≥ 0 . Therefore, the domain of a logarithmic function is all real numbers such that the number operated on by the logarithm is ≥ 0 .
	The range of a logarithmic function is all real numbers.
	In the example to the left, the domain is ≥ 1 , because the value operated on by the logarithm is $x - 1$. You can set $x - 1 \ge 0$ and solve for x to get the domain.
A logarithmic expression: For example: $\log(2 \cdot 2) = \log 2 + \log 2$	You must remember each of the logarithm rules shown in the examples to the left. Remember, a logarithm works just like an exponent.
$\log(2 \circ 3) = \log 2 + \log 3$ $\log(\frac{2}{3}) = \log 2 - \log 3$ $\log(2^3) = 3\log 2$	These expressions match the corresponding rules for exponents. For example, when you multiply two numbers, you add their exponents. Similarly, the logarithm of two numbers multiplied together = the logarithm of each number added together.
Logarithmic simplification examples:	These are some typical examples for simplifying
$3\log x - 2\log y + 4\log z = \log\left(\frac{x^{3}z^{4}}{y^{2}}\right)$ $\log(x^{2}yz^{3}) = 2\log x + \log y + 3\log z$	logarithinic expressions.
$105(x y_{x}) = 2105 x + 105 y + 5105 z$	
A logarithmic equation: For example: $\log_4 2^{x-3} = x+1$ OR $\log (2x) = \log (3-x)$	A standard technique is to transform the logarithm equation into an equivalent exponential equation (if you have a logarithm = a number). If you have a logarithm = a logarithm, then simply equate the numbers on which the logarithms operate. You must check for extraneous (invalid) solutions.
	For example, in the first example at left, the definition of a logarithm gives $2^{x-3} = 4^{x+1}$. This gives the same result for x as the example under "exponential equation" (x = -5). Plugging this back into the original equation shows that this is a valid solution (no extraneous solutions).
	In the second example at left, just equate $2x = 3 - x$ and solve for x. That gives $x = 1$, which is valid (no extraneous solutions).

This work is licensed by H. Carey Gire under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Copying allowed for non-commercial purposes. Please attribute if materials modified.

If You See	You Should Think
A sequence:	Check the difference between each element. If it
	is <u>constant</u> , it is an arithmetic sequence . You get
For example:	each successive term by <u>adding</u> the constant to the
2, 6, 10, 14, 18,	previous term. If a_1 is the first term, a_2 is the
	second term, \dots , a_n is the nth term, and d is the
	constant difference between terms, then the
	recursive rule is $a_n = a_{n-1} + d$. The explicit rule (in terms of the first term a_n) is $a_n = a_{n-1} + (n-1)d$
	(in terms of the first term, a_1) is $a_n - a_1 + (n - 1)a$.
	If you add up each of the terms in the sequence,
	you get the arithmetic series $(a_1 + a_2 + + a_n)$.
	The sum of the first n terms of the series =
	$\mathbf{S}_{\mathbf{n}} = n \frac{(a_1 + a_n)}{(a_1 + a_n)}$
	2
	In the example, the constant difference is $A(2 + 4)$
	In the example, the constant difference is $4(2 + 4)$ - 6: 6 + 4 - 10: etc.)
A sequence:	Check the difference between each element. If
	there is a constant ratio between each element .
For example:	it is a geometric sequence . You get each
2, 6, 18, 54, 162,	successive term by <u>multiplying</u> the constant ratio
	by the previous term. If a_1 is the first term, a_2 is
	the second term, \dots , a_n is the nth term, and r is the
	constant ratio between terms, then the recursive
	rule is
	$a_n = ra_{n-1}$. The explicit rule (in terms of the first
	term, a_1) is $a_n = r^{n-1}a_1$.
	If you add up each of the terms in the sequence.
	you get the geometric series $(a_1 + a_2 + + a_n)$.
	The sum of the first n terms of the series =
	$S = a \frac{(1-r^n)}{r^n}$
	$\int \sin u_1 \frac{u_1}{1-r} dr$
	In the example, the constant ratio is $3(2 * 3 - 6 \cdot 6)$
	* $3 = 18$; etc.).