If You See	You Should Think
A quadratic expression that is to be <u>factored</u> :	If possible, factor into $(-+/)(-+/)$.
For example $x^2 + 6x = 16$	How to do this? Realize that <i>factoring is the</i>
For example, $x + 0x - 10$	• The first terms in each set of parentheses must
	multiply to equal the x^2 term.
	• The last two terms must <u>multiply</u> to the equal
	the number term. So, find the factors of the
	number term.
	• The factors of the number term must <u>add</u> to equal the coefficient of the middle term.
	In this example:
	• The x ² term factors into x and x.
	• The last term factors into 1 and -16 , or -1 and
	16, or 2 and -8 , or 8 and -2 , or 4 and -4 . The correct pair is 8 and -2 since that adds to
	6 (the coefficient of the 6x middle term).
	• The correct factors are $(x + 8)(x - 2)$.
A quadratic equation to be solved by <u>factoring</u> :	Factor as described above.
For example, $x^2 + 6x - 16 = 0$	In this example:
	• The equation factors into $(x + 8)(x - 2) = 0$.
	• <i>The key point</i> : any time two numbers a and b are multiplied and give 0 (ab = 0), then either a = 0, b = 0, or both.
	• In this case, that says that $x + 8 = 0$ or $x - 2 = 0$. This gives two solutions: $x = -8$ and $x = -2$.
A quadratic equation to be solved where there	0. This gives two solutions: $x = -8$ and $x = 2$.
are a <u>squared term</u> and <u>numbers</u> :	 Get the squared term by itself on one side of
	the equal sign by moving all other number
For example, $2(x - 1)^2 - 8 = 10$	terms to the other side of the equal sign.
	Add (to remove a negative term)
	 Subtract (to remove a positive term) Multiply (to remove a value dividing the
	square term)
	• Divide (to remove a value multiplying the square term).
	 Take the square root of each side of the
	equation. Note: that inserts $a \pm in$ front of the
	number.
	• Finally, solve the equation for x.
	• In this example
	• $2(x-1)^2 - 8 + 8 = 10 + 8 \rightarrow 2(x-1)^2 = 18$
	• $2(x-1)^2/2 = 18/2 \rightarrow (x-1)^2 = 9$ • Take the square root giving $x = 1 - +3$
	• That gives 2 solutions: $x = 4$, $x = -2$.

This work is licensed by H. Carey Gire under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Copying allowed for non-commercial purposes. Please attribute if materials modified.

A quadratic equation to be solved by	This uses a different approach:
completing the square:	• Put parentheses around the x^2 and x terms.
	• Factor out any coefficient of x^2 (if there is one.
Example 1: $x^2 + 6x - 16 = 0$	it is called "a").
1	• The coefficient of the middle term is called
	"h" Compute $b/2$ and $(b/2)^2$
	• Add $(h/2)^2$ inside the parentheses
	• Add $(0/2)$ inside the parentheses. • Multiply $(b/2)^2$ by the factored out coefficient
	• Multiply $(0/2)$ by the factored out coefficient of x^2 and subtract that value outside of the
Example 2: $2x^2 + 8x - 3 = 0$	of x and subtract that value outside of the
1	parentineses. Experimental parent bases on a $(m + h/2)^2$
	• Factor the parentneses as $\mathbf{a} (\mathbf{x} + \mathbf{b}/2)^2$.
	• Solve as above: a quadratic equation with a
	squared term and numbers.
	In Example 1.
	$\frac{\text{III Example 1}}{(\pi^2 + 6\pi)} = 16 - 0$
	• $(x^2 + 6x) - 16 = 0$
	• $b = 6; b/2 = 3; (b/2)^2 = 9$
	• $(x^2 + 6x + 9) - 9 - 16 = 0$
	• $(x+3)^2 - 25 = 0$
	• Solve: $(x + 3)^2 - 25 = 0 \rightarrow x = 3 \pm 5 = 8, -2$
	In Example 2:
	• $(2x^2 + 8x) - 3 = 0$
	• $2(x^2 + 4x) - 3 = 0$
	• $a = 2; b = 4; b/2 = 2; (b/2)^2 = 4$
	• $2(x^2 + 4x + 4) - 2(4) - 3 = 0$
	• $2(x+2)^2 - 11 = 0$
	<u> </u>
	• Solve: $2(x+2)^2 - 11 = 0 \Rightarrow x = -2 \pm \sqrt{\frac{11}{2}}$
A quadratic function to be put into vertex	Convert to vertex form by <u>completing the square</u> :
form: $y = ax^2 + bx + c \rightarrow y = a (x - h)^2 + k$	• Put parentheses around the x ² and x terms.
	• Factor out any coefficient of x^2 (if there is one,
For example, $y = x^2 + 6x - 16$	it is called "a").
	• The coefficient of the middle term is called
	"b". Compute $b/2$ and $(b/2)^2$.
	• Add $(b/2)^2$ inside the parentheses.
	• Multiply $(b/2)^2$ by the factored out coefficient
	of x^2 and subtract that value outside of the
	parentheses.
	• Factor the parentheses as $\mathbf{a} (\mathbf{x} + \mathbf{b}/2)^2$.
	• Simplify (by adding any number terms
	together). The vertex is (h, k), where $h = -h/2$
	6 · · · · · · · · · · · · · · · · · · ·
	In the example:
	• $y = (x^2 + 6x) - 16$
	• $\mathbf{b} = 6$: $\mathbf{b}/2 = 3$: $(\mathbf{b}/2)^2 = 9$
	• $\mathbf{v} = (\mathbf{x}^2 + 6\mathbf{x} + 9) - 9 - 16$
	• $y = (x + 3)^2 - 25 \rightarrow \text{vertex:} (-3, -25)$

This work is licensed by H. Carey Gire under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Copying allowed for non-commercial purposes. Please attribute if materials modified.