Function Name	Reference Function	Graph	Domain/Range	Features
Linear	y = x		D: all real numbers R: all real numbers	y = mx + b $y - y_1 = m (x - x_1)$ slope = m = $\frac{rise}{run}$ = number multiplying x variable
Quadratic	$y = x^2$		D: all real numbers R: all real numbers ≥ <i>the minimum</i>	x_intercepts \rightarrow zeroes/solutions/roots \rightarrow factors Set y = 0 to get x_intercepts. Up to 2 zeroes (also called "solutions" or "roots").
Square root	$y = \sqrt{x}$		D: all real numbers where the radicand (stuff under the square root) ≥ 0 R: all real numbers \geq the minimum	"Stuff" under radical sign must be ≥ 0 . This is true for all even roots (4 th root, 6 th root, etc.).
Cubic	$y = x^3$		D: all real numbers R: all real numbers	x_intercepts \rightarrow zeroes/solutions/roots \rightarrow factors Set y = 0 to get x_intercepts. Up to 3 zeroes (also called "solutions" or "roots").
Cube root	$y = \sqrt[3]{x}$		D: all real numbers R: all real numbers	"Stuff" under radical sign can be any real number. This is true for all odd roots (3 rd root, 5 th root, etc.).

This work is licensed by H. Carey Gire under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Copying allowed for non-commercial purposes. Please attribute if materials modified.

Exponential	Growth:		D: all real numbers	If the base is > 1 and the exponent is a positive
	$y = e^x$			variable, then the graph is a exponential growth
	(or $y = 10^{x}$)		R: all real numbers	function. Example: $y = 10^x$.
			> the asymptote	
				If the base is < 1 and the exponent is a positive
				variable, then the graph is a exponential <u>decay</u>
				function. Example: $y = \left(\frac{1}{2}\right)^{x}$.
				If the base is > 1 and the exponent is a negative
	Decay:	T.		variable, then the graph is a exponential <u>decay</u>
	$y = e^{-x}$ (or $y = 10^{-s}$)			function. Example: $y = 2^{-x}$.
				The asymptote is the straight line $y - k$ where k
				is the value that the function gets close to as $x \rightarrow x$
				$-\infty$ (growth functions) or ∞ (decay functions). In
				the examples, the asymptote is $y = 0$.
Logarithmic	$v = \ln x$		D: all real numbers	The argument of the logarithm (the expression
	(or v = log x)		> the asymptote	upon which the logarithm operates) ≥ 0 .
			R: all real numbers	
				The asymptote is the straight line $x = h$, where h
				is the value of x for which the function gets close
				to– ∞ . In the example, the asymptote is $x = 0$.
Rational	1		D. all real numbers \neq values	Values of the variable that make the
Kutiviiui	$y = \frac{1}{x}$		making denominators = 0	denominator(s) = 0 are excluded from the
	X			domain.
			R: all real numbers	
				Those values represent <i>asymptotes</i> or <i>holes</i> .
		l /		Holes occur when factors are totally canceled
				from the rational expression. Asymptotes occur
		i I		for any factor remaining in the denominator.

Absolute Value	y = x		D: all real numbers	The "absolute value" of x gives x, if $x \ge 0$, and -x if $x < 0$. For example, if $x = 2$, $ x = 2$. If
Value			R: all real numbers > <i>the minimum</i>	x = -2, x = 2.
Step (Greatest Integer)	y = [x]		D: all real numbers R: all real numbers > <i>the minimum</i>	The "greatest integer" function. "Greatest integer" means that for any value x, pick the integer value that is $\leq x$. For example, if $x = 2$, [x] = 2. If x = 2.9, [x] = 2.
Piecewise	$y = \begin{cases} 2x+1, \ x \le 1\\ x^2+2, \ x > 1 \end{cases}$		D: specified for each function part explicitly R: depends on the underlying functions	 Piecewise functions are nothing more than two or much functions defined on different parts of the overall domain. In the example, the domain is in two parts: x ≤ 1 and x > 1. The function for x ≤ 1 is a straight line, while the function for x > 1 is a parabola.
Sinusoidal	$y = \sin t$ or $y = \cos t$	\sim	D: all real numbers R: [-1, 1]	The sinusoidal functions are periodic (they oscillate from value to value). Their attributes are: amplitude, period, phase (horizontal) shift, vertical shift
Standard Normal (Gaussian)	$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$		D: all real numbers R: $\left(0, \frac{1}{\sigma\sqrt{2\pi}}\right)$	The standard normal curve represents the relative likelihood of values normally distributed about a mean μ with standard deviation σ .