Circles - Central Angle, Arcs

Minor Arc: $mAC = m \angle ABC = x^{\circ}$

Major Arc: $mADC = 360^{\circ} - x^{\circ}$

<u>Circles – Tangents</u>

 $\angle AEC$ is an inscribed angle. Its measure is $\frac{1}{2}$ of the central angle $\angle ABC$.

$$\angle AEC = \frac{1}{2} \angle ABC$$

Compare with "Secant, Chord, and Tangent Angles" below – all have factor $\frac{1}{2}$.

If the central angle intercepts a diameter (180°), then the inscribed angle is 90° .

Tangent line ℓ is perpendicular to radius BC at point C.

For a tangent $\overline{A}\overline{B}$ and a secant $\overline{B}\overline{C}$ drawn from a common point B,

the $m \angle CBA = \frac{1}{2} mCB$.

E C A B

If two tangents intersect <u>outside</u> a circle, then the angle formed is <u>half</u> <u>the difference</u> of the intercepted arcs.

$$m \angle CAB = \frac{1}{2} \begin{pmatrix} n \end{pmatrix} \begin{pmatrix} 0 \\ CEB \end{pmatrix} - m \end{pmatrix}$$

For two tangents \overline{AB} and \overline{AC} drawn from a common point A, the lengths of \overline{AB} and \overline{AC} are the same. Indeed, the triangles $\triangle ABP$ and $\triangle ACP$ are congruent.

Compare with "Secant, Chord, and Tangent Angles" below – all have a factor of $\frac{1}{2}$.

<u>Circles – Secant, Chord, and Tangent Angles</u>

If two secants or chords intersect <u>inside</u> a circle, then <u>each</u> angle formed is <u>half the sum</u> of the intercepted arcs. *Example:*

If a secant and a tangent intersect <u>outside</u> a circle, then the angle formed is <u>half the difference</u> of the intercepted arcs.

$$m\angle CAB = \frac{1}{2}(mEB - mCB)$$

<u>Circles – Secant and Chord Lengths</u>

If two chords intersect <u>inside</u> a circle, then the <u>products</u> of the <u>lengths</u> of the two pieces of each chord are equal.

$$AE * ED = BE * EC$$

If two secants intersect <u>outside</u> a circle, then the <u>products</u> of the <u>full</u> segment lengths and the <u>external</u> segment lengths are equal.

AE * AC = AD * AB

If a secant and a tangent intersect <u>outside</u> a circle, then the <u>product</u> of the <u>full</u> secant segment length and the <u>external</u> segment length equals the <u>square</u> of the tangent segment length.

$$AE * AC = (AB)^2$$

This work is licensed by H. Carey Gire under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Copying allowed for non-commercial purposes. Please attribute if materials modified.