Pythagorean Theorem

30-60-90 Right Triangle

45-45-90 Right Triangle

SOH-CAH-TOA

The Other Trig Functions

This work is licensed by H. Carey Gire under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Copying allowed for non-commercial purposes. Please attribute if materials modified.

side

Inverse Trig Functions

Unit Circle Diagram

SOH CAH TOA:

$$\sin \theta = \frac{opp}{hyp} = \frac{y}{1} = y$$

$$\cos \theta = \frac{adj}{hyp} = \frac{x}{1} = x$$

$$\tan \theta = \frac{opp}{adj} = \frac{y}{x} = \frac{\sin \theta}{\cos \theta} (identity \# 1)$$

Pythagorean Theorem:

$$x^{2} + y^{2} = 1 \text{ (also the circle equation)}$$
$$(\cos \theta)^{2} + (\sin \theta)^{2} = 1$$
$$\Rightarrow \cos^{2} \theta + \sin^{2} \theta = 1 \text{ (identity #2)}$$

General (non-unit) Circle Diagram

SOH CAH TOA:

$$\sin \theta = \frac{opp}{hyp} = \frac{y}{r}$$

$$\cos \theta = \frac{adj}{hyp} = \frac{x}{r}$$

$$\tan \theta = \frac{opp}{adj} = \frac{y}{x}$$

Polar Coordinate Transform:

$$x^{2} + y^{2} = r^{2}$$
 (also the circle equation)
 $x = r \cos \theta$
 $y = r \sin \theta$
 $\theta = \tan^{-1} \left(\frac{y}{x}\right)$