If You See	You Should Think
Ordered selection with replacement – multiple sets	Permutation with replacement: multiplication rule
 Examples: Selecting a 3-person band from 3 sets of different size: 5 guitarists, 2 drummers, and 4 singers 	Count = $\mathbf{n}_1 \cdot \mathbf{n}_2 \cdot \dots \cdot \mathbf{n}_k$, where \mathbf{n}_k = the number of items in the k <u>th</u> set. For example, there are $5 \cdot 2 \cdot 4 = 40$ different band arrangements
Ordered selection with replacement –	Permutation with replacement
 single set Examples: 1. Throwing two dice 2. Flipping two coins 3. Selecting 1 item from each of three sets 	Count = $\mathbf{n}^{\mathbf{k}}$, where n = the number of items to choose and k = the number of selections of those n items. For example, for two dice there are n = 6 items to choose (the 6 sides) and k = 2 selections (the two dice that are thrown).
Ordered selection without replacement	Permutation without replacement
Examples:1. Possible arrangements of people in a line2. Selecting 6 numbered balls from a set of 99 balls for the lottery	Count = $_{\mathbf{n}}\mathbf{P}_{\mathbf{k}} = \frac{n!}{(n-k)!}$ where n = the number of items to choose and k = the number of selections of those n items. For example, when selecting 6 balls (in order) from 99 balls, n = 99 and k = 6, giving $_{99}P_6 = \frac{99!}{(99-6)!} = 806,781,064,320.$
Unordered selection without	Combination without replacement
 replacement Examples: Number of games played between 10 teams in a round robin tournament Number of ways 5 cards can be selected from 13 hearts in a card deck 	Count = $_{n}C_{k} = {n \choose k} = \frac{n!}{(n-k)!k!}$ where n = the number of items to choose and k = the number of selections of those n items. For example, there are $_{13}C_5 = \frac{13!}{(13-5)!5!} = 1287$ ways to pick 5 cards from the 13 hearts in a deck of cards.
Unordered selection without	Combination without replacement with partitions
replacement with partitionsExamples:1. Number of 13-card bridge hands possible with 4 players.	Count = $=\frac{n!}{r_1!r_2!r_1!}$ where n = the number of items to choose and r _i = the number of items in partition i. For example, there are $\frac{52}{13!!3!!3!!3!} = 6,227,020,800$ ways to deal 4 13-card bridge hands.

This work is licensed by H. Carey Gire under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Copying allowed for non-commercial purposes. Please attribute if materials modified.