
If You See	You Should Think
Angle-Angle-Side (AAS)	Law of Sines (one solution) (note: $\angle B = 180^\circ - \angle A - \angle C = 110^\circ$)
B	$\frac{\sin C}{c} = \frac{\sin A}{a} \rightarrow \frac{\sin 35^{\circ}}{10} = \frac{\sin 45^{\circ}}{a} \text{ (solve for a)}$
10 a	c a 10 a
	$\frac{\sin C}{c} = \frac{\sin B}{b} \rightarrow \frac{\sin 35^{\circ}}{10} = \frac{\sin 110^{\circ}}{b} \text{ (solve for b)}$
A 45° b 35° C	c b 10 b
Angle- Side-Angle (ASA)	Law of Sines (one solution) (note: $\angle B = 180^\circ - \angle A - \angle C = 110^\circ$)
B	$\frac{\sin C}{c} = \frac{\sin B}{b} \rightarrow \frac{\sin 35^{\circ}}{c} = \frac{\sin 110^{\circ}}{12} \text{ (solve for c)}$
a	$\begin{array}{ccc} c & b & c & 12 \\ \sin P & \sin A & \sin 1109 & \sin 459 \end{array}$
c u	$\frac{\sin B}{b} = \frac{\sin A}{a} \rightarrow \frac{\sin 110^{\circ}}{12} = \frac{\sin 45^{\circ}}{a} \text{ (solve for a)}$
A 45° 12 35° C	b a 12 a
Side- Side-Angle (SSA): A obtuse, a > c	Law of Sines (one solution)
B	(note: because $a > c$, there is only one solution)
12 15	$\frac{\sin C}{c} = \frac{\sin A}{a} \rightarrow \frac{\sin C}{12} = \frac{\sin 110^{\circ}}{15} \text{ (solve for } \angle C \text{ and then } \angle B)$
12	
$A 110^{\circ} C$	$\frac{\sin B}{b} = \frac{\sin A}{a} \rightarrow \frac{\sin B}{b} = \frac{\sin 110^{\circ}}{15} \text{ (solve for b)}$
Side- Side-Angle (SSA): A obtuse, $a \le c$	No solution
B 12	There is no solution because side a (length 12) is too short to ever
15	reach side b (which is at least 15 units away). Therefore, no
A 110°	triangle can be constructed.
Side-Side-Angle (SSA): A acute a>c> h	Law of Sines (one solution)
B	(note: because $a > c$, there is only one solution)
15	$\frac{\sin C}{c} = \frac{\sin A}{a} \rightarrow \frac{\sin C}{15} = \frac{\sin 60^{\circ}}{16} \text{ (solve for } \angle C \text{,}$
h h	
$\frac{A \ 60^{\circ}}{C}$	$\angle B = 180^\circ - \angle A - \angle C$, and then find b using the Law of Sines). No solution
Side-Side-Angle (SSA): A acute a < h B	
8	Calculate $h = 15 \sin 60^{\circ}$ using SOHCAHTOA. $a = 8 < 12.99 = h$.
15	There is no solution because side a is too short (length 8) to ever
A 60° h	reach side b (at least 12.99 units away). Therefore, no triangle can
	be constructed.
Side-Side-Angle (SSA): A acute a = h B	Right Triangle (one solution)
	Calculate $h = 15\sin 60^{\circ}$. $a = 12.99 = h$. There is one solution
15	because side a is perpendicular to side b (right triangle).
15 h =12.99	Therefore, use the Pythagorean Theorem to find side b $(15^2 -$
	$12.99^2 = b^2). \ \angle B = 180^\circ - \angle A - \angle C = 30^\circ.$
Side-Side-Angle (SSA): A acute c>a> h	Law of Sines (2 solutions)
	Calculate $h = 15\sin 60^{\circ}$. $B = 15 > a = 14 > 12.99 = h$. There are
15 14 15	two solutions because $\sin(\angle C)$ is positive for two values of $\angle C$
15 h 14 15 h	(one acute, one obtuse). Find the two values of $\angle B$. Then use the
$A 60^{\circ} A 60^{\circ} 14$	Law of Sines for each of the two possible triangles to find side b.

This work is licensed by H. Carey Gire under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Copying allowed for non-commercial purposes. Please attribute if materials modified.

