Limit Analysis

Limits at a Finite Value of x (x = a)

Type 1 (continuous function that exists at X = a):
e Approach: plug in the value of x =a to evaluate f(a).
e Example: IimS(2x -4)=2Q3)-4=2
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Type 2 (rational function that evaluates to o atx = a):

e Approach: Factor the rational function. If the factor (x — a) exists in the numerator and
denominator, cancel the common factors and plug in x = a to evaluate the remaining
function.
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Limits at an Infinite Value of x (x 2+ «)

Type 1 (simple rational function):
e Approach: A positive power of x in the denominator forces the limit to 0. A positive of
X in the numerator forces the limit to 0.
e Example: lim 3 =0ifr>0.
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e Example: limx" =wifr>0.
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Type 2 (rational function with simple denominator):
e Approach: divide the numerator terms individually by the denominator and take the limit
of each piece separately.
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Type 3 (rational function with complex denominator):
e Approach: divide the numerator terms individually by the highest power in the
denominator. Then evaluate the limit of the numerator and denominator separately.
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Type 4 (rational function with positive exponential term):
e Approach: The exponential term approaches oo much faster than any power of n. If the

exponential term is in the numerator, the limit is forced to = oo. If the exponential term
is in the denominator, the limit is forced to 0.
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Type 5 (rational function with negative exponential term):

o Approach: (1) oscillates between —1 and 1 as n = co. If the limit of the remaining

terms in the function - 0, then the oscillating function - 0. Otherwise the limit does
not exist (is undefined).
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