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Limit Analysis 
 

Limits at a Finite Value of x (x  a) 

 

Type 1 (continuous function that exists at x = a):   

 Approach:  plug in the value of x =a to evaluate f(a). 

 Example:   24)3(2)42(lim
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Type 2 (rational function that evaluates to 
0

0
 at x = a):   

 Approach:  Factor the rational function.  If the factor (x – a) exists in the numerator and 

denominator, cancel the common factors and plug in x = a to evaluate the remaining 

function. 

 Example:   725)2(lim
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Limits at an Infinite Value of x (x ± ∞) 

 

Type 1 (simple rational function):   

 Approach:  A positive power of x in the denominator forces the limit to 0.  A positive of 

x in the numerator forces the limit to 0. 

 Example:   0
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if r > 0. 

 Example:   
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Type 2 (rational function with simple denominator):   

 Approach:  divide the numerator terms individually by the denominator and take the limit 

of each piece separately. 

 Example:   
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Type 3 (rational function with complex denominator):   

 Approach:  divide the numerator terms individually by the highest power in the 

denominator.  Then evaluate the limit of the numerator and denominator separately. 

 Example:   0
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Type 4 (rational function with positive exponential term):   

 Approach:  The exponential term approaches ∞ much faster than any power of n.  If the 

exponential term is in the numerator, the limit is forced to  ∞.  If the exponential term 

is in the denominator, the limit is forced to 0. 
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Type 5 (rational function with negative exponential term):   

 Approach:   n1 oscillates between –1 and 1 as n  ∞.  If the limit of the remaining 

terms in the function  0, then the oscillating function  0.  Otherwise the limit does 

not exist (is undefined). 
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 Example:   undefined
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