If You See	You Should Think
	Straight angle = 180° . Also, the sum of the two angles on each side of the straight line = 180° (they're <u>supplementary</u>).
	Right angle = 90° . Also, the sum of the two angles that make up the right angle = 90° (they're <u>complementary</u>).
Two parallel lines cut by a transversal line:	If you know one angle you know all 8 angles.
Crossing lines:	Vertical angles – the pairs of opposite angles are equal. The adjacent angles are supplementary (sum to 180°).
A triangle with angles marked:	The sum of the angles in a triangle = 180° .
A triangle with two equal angles marked:	Isosceles triangle – the two sides opposite the two angles are equal.
A triangle with two equal sides marked:	Isosceles triangle – the two angles opposite the two sides are equal.
A right triangle with <u>two sides known</u> : 5 12	Pythagorean Theorem – the square of one short side + the square of the other short side = the square of the hypotenuse. Also, look for 3-4-5, 6-8-10, and 5-12-13.

A right triangle with <u>special angles</u> :	Special right triangle. The sides of a 30-60-90 triangle are in a ratio of 1: $\sqrt{3}$:2. The sides of a 45-45-90 are in a ratio of $\sqrt{2}$: $\sqrt{2}$:2.
$\begin{array}{ c c c c c }\hline & 30^{\circ} & \hline & 45^{\circ} \\\hline A \ right triangle with one side and one angle. \end{array}$	SOHCAHTOA:
A right triangle with <u>one side and one angle</u> :	$\sin \theta = \frac{opp}{hyp}$ $\cos \theta = \frac{adj}{hyp}$ $\tan \theta = \frac{opp}{adj}$
An equilateral triangle: 60° 60° 60°	All sides are equal. All angles are equal (= 60°). The angle bisector of any angle also is a perpendicular bisector of the opposite side. That line segment also divides the triangle into two congruent 30-60-90 triangles. You can use that info to find the base and height of the equilateral triangle, and then find its area.
Similar triangles:	All three angles are equal. Sides are proportional.
$ \begin{array}{c c} B \\ C \\$	In the examples at left, $\triangle ABC$ is similar to $\triangle AED$ ($\triangle ABC \sim \triangle AED$), and $\triangle PRQ \sim \triangle SRT$ (because ST PQ).
Congruent triangles:	All sides and angles are congruent. There are three
$\begin{bmatrix} B \\ C \\ C \\ C \\ A \\ F \\ D \\ D$	methods for determining congruence: • ASA • SAS • SSS In the example at left, if AC = DF and BC = EF (and the right angles are already given), then \triangle ABC is congruent to \triangle DEF (\triangle ABC $\cong \triangle$ DEF) because of SAS.
A diagram with two (widely separated) items that need to be related y° What is x + y?	Build "bridges" between the two items using mathematical rules you know (for example, vertical angles, parallel line angles, etc.).
459	In the example at left, build a bridge for x using vertical angles. Then x and y are in the same triangle, and $x + y + 45 = 180$, so $x + y = 135$.
A complex area (divide into parts)	Divide a complex area into smaller areas for which you know a formula (e.g., triangles, rectangles, etc.). In the example at left, the dotted lines divide the figure into two triangles and one rectangle.
A complex area (already in parts)	If an area is composed of two parts, find one small area by subtracting the other small area from the total area. In the example at left, subtract the circle area from the hexagon area to get the shaded area.

Sector of a circle (are longth):	Circumference: full circumference equation is $C = -*$
Sector of a circle (arc length):	Circumference: full circumference equation is $C = \pi^*$ diameter (or $2\pi^*$ radius).
3 60°	Arc length of a <u>sector</u> is <u>proportional</u> to the <u>central angle</u> . In the example at left:
	$\frac{\text{sector}_length}{circumference} = \frac{central_angle}{360^{\circ}}, \text{ so}$
	$\frac{\sec tor_length}{2\pi(3)} = \frac{60^{\circ}}{360^{\circ}} \text{ and}$
	sector_length = $\frac{6\pi}{6} = \pi$ Area: full area equation is A = π r ² .
Sector of a circle (area):	Area: full area equation is $A = \pi r^2$.
3	Area of a <u>sector</u> is <u>proportional</u> to the <u>central angle</u> . In the example at left:
60°	$\frac{\text{sector}_area}{full_area} = \frac{central_angle}{360^{\circ}}, \text{ so}$
	$\frac{\sec tor_area}{\pi(3)^2} = \frac{60^\circ}{360^\circ} \text{ and sector_area} = \frac{9\pi}{6} = \frac{3\pi}{2}$
Parallel lines	Parallel lines have the <u>same slopes</u> .
• If one line has equation $y = 2x - 5$, give an example of the equation of a parallel line.	In the example at left, any line with slope 2 works: e.g., $y = 2x + 3$.
Perpendicular lines	Perpendicular lines have <u>slopes that are negative</u> <u>reciprocals</u> .
• If one line has equation $y = 2x - 5$, give an	-
example of the equation of a perpendicular	In the example at left, any line with slope $\frac{-1}{2}$ works:
	In the example at left, any line with slope $\frac{1}{2}$ works: e.g., $y = \frac{-1}{2}x + 3$.
example of the equation of a perpendicular	
example of the equation of a perpendicular line.	e.g., $y = \frac{-1}{2}x + 3$.
 example of the equation of a perpendicular line. Line equation given the slope and y-intercept If a line has slope -1 and y-intercept (0, 3), 	e.g., $y = \frac{-1}{2}x + 3$. Slope-intercept form: $y = mx + b$ In the example at left, $m = -1$ and $b = 3$, so the line
 example of the equation of a perpendicular line. Line equation given the slope and y-intercept If a line has slope -1 and y-intercept (0, 3), what is its equation? 	e.g., $y = \frac{-1}{2}x + 3$. Slope-intercept form: $y = mx + b$ In the example at left, $m = -1$ and $b = 3$, so the line equation is $y = -x + 3$.
 example of the equation of a perpendicular line. Line equation given the slope and y-intercept If a line has slope -1 and y-intercept (0, 3), what is its equation? Line equation given the slope and another point If a line has slope -1 and passes through 	e.g., $y = \frac{-1}{2}x + 3$. Slope-intercept form: $y = mx + b$ In the example at left, $m = -1$ and $b = 3$, so the line equation is $y = -x + 3$. Point-slope form: $y - y_1 = m(x - x_1)$ In the example at left, $m = -1$, so the line equation is $y - b$
 example of the equation of a perpendicular line. Line equation given the slope and y-intercept If a line has slope -1 and y-intercept (0, 3), what is its equation? Line equation given the slope and another point If a line has slope -1 and passes through (3, 2), what is its equation? 	e.g., $y = \frac{-1}{2}x + 3$. Slope-intercept form: $y = mx + b$ In the example at left, $m = -1$ and $b = 3$, so the line equation is $y = -x + 3$. Point-slope form: $y - y_1 = m(x - x_1)$ In the example at left, $m = -1$, so the line equation is $y - 2 = -(x - 3)$. Simplifying gives $y = -x + 5$.

Difference of squares: $x^2 - y^2$	$\underline{Factor} \text{ as } (\mathbf{x} + \mathbf{y}) (\mathbf{x} - \mathbf{y}).$
• $x^2 - 4 = (x + 2) (x - 2)$	
• $4y^2 - 9z^4 = (2y + 3z^2)(2y - 3z^2)$	
The problem statement mentions " integer "	You may be able to list out (or draw) all possible integer
The problem successes mentions meger	<u>choices</u> (this makes the problem easier!).
• What are all the integer coordinates that lie	(
within the rectangle with corners at $(-2, 1)$,	
(2, 1), (2, -1), (-2, -1)?	
Problem statement referencing "divisibility"	Try substituting appropriate test values.
If x is divisible by 3 and y is divisible by 2, is xy	In the example at left, substitute $x = 3$,
divisible by 6?	y = 4; then $xy = 3(4) = 12$, which is divisible by 6.
	Confirm with $x = 6$ and $y = 4$.
Problem statement referencing "remainder"	Try listing out candidate test values that meet the
If 5 concoputive integens are divided by 2 the	criterion.
If 5 consecutive integers are divided by 3, the remainders are 1, 2, 0, 1, and 2. Which of the	In the example at left, start by finding the first element.
integers is divisible by 3?	For example, 4 divided by 3 has a remainder of 1. The 5
	consecutive integers are then 4, 5, 6, 7, and 8. The third
	item in the list is divisible by 3.
Inequality: "between" two values	You can express the inequality in two ways:
	• $ x - midpoint \le$ "radius"
-2 +4	• midpoint – radius $\leq x \leq$ midpoint + radius
	
	In the example to left,
	$ \mathbf{x} - 1 \le 3$ or $-2 \le \mathbf{x} \le 4$
Inequality: "outside" two values	You can express the inequality in two ways:
	• $ \mathbf{x} - \text{midpoint} \ge$ "radius"
	• $x \le \text{midpoint} - \text{radius} \text{and}$
$ \longleftrightarrow $	$x \ge$ midpoint + radius
	In the example to left,
	$ x-1 \ge 3$ or $x \le -2$ and $x \ge 4$
The problem statement asks for a " non-simple	Look for a way of obtaining the non-simple result
result"	directly from the inputs (with minimal computation).
• If $x + 2y = 5$, what is $2x + 4y$?	In the example at left, note that
	2x + 4y = 2(x + 2y), so $2x + 4y = 2$ (5) = 10.
The problem statement talks about data for more	Set up the data in a table. Include the time period as one
than one time period (steps, days, years, etc.).	column.
• The original price of a shirt is decreased	In the example at left, set up a table (and pick an original
10%. Later, it is decreased an additional	price that's easy to use):
20%. What is the net percent decrease	Time period Price Change
from its original price?	0 \$100 -10%
	1 \$90 -20%
	2 \$72
$\mathbf{x} * \mathbf{y} * \mathbf{z} \neq 0$	<u>None</u> of x, y, or $z = 0$.
$\mathbf{x} * \mathbf{y} * \mathbf{z} = 0$	<u>One or more</u> of x, y, or $z = 0$.

System of equations	There are 3 approaches (on the SAT) for solving (all with
	the plan to <u>eliminate</u> one variable):
What are x and y if	• Add the equations
	• Subtract the equations
x + y = 3 and	• Substitute one equation into the other
x - y = 5	In the example at left, note that y and –y are opposites.
	So, add them to get $2x = 8$. Then, $x = 4$. Substitute into
	the other equation to get $y = -1$.
System of equations with complex result	Same idea as above, but look for ways of <u>directly</u>
	obtaining the result:
What is $2x + 3y$ if	• Add the equations
	Subtract the equations
x + y = 3 and	• Substitute one equation into the other
x + 2y = 5	In the example at left, note that if you add the two
	equations you get $2x + 3y$ (the complex result that was
	asked for). So, $2x + 3y = 3 + 5 = 8$.
Relationship between two or more items (with	Ratio/Proportions
different units)	
Example: 1.25 inches relates to 30 miles; how	$\frac{30 \text{ miles}}{1.25 \text{ inches}} = \frac{x \text{ miles}}{3.75 \text{ inches}} \Longrightarrow x = 90 \text{ miles}$
many miles is 3.75 inches?	1.25 inches 3.75 inches
Least common multiple or denominator	Factor each number into its prime factors. Look for the
• What is the least common multiple of 25, 8,	highest power of each prime factor. Multiply those
and 30?	together to get the least common multiple.
	Example: $25 = 5^2$, $8 = 2^3$, $10 = 2 * 3 * 5$. The least
	common multiple = $5^2 * 2^3 * 3 = 600$.
A right triangle with two angles or one side and	SOHCAHTOA
one angle	$\sin \theta = opp$ $\cos \theta = adj$ $\tan \theta = adj$
	$\sin \theta = \frac{opp}{hyp}$ $\cos \theta = \frac{adj}{hyp}$ $\tan \theta = \frac{adj}{opp}$
N	Example (left):
10	
	$\sin 40^\circ = \frac{x}{10} \rightarrow 10\sin 40^\circ = x \rightarrow x \approx 6.43$
40° y°	Example (right):
	- · · · ·
	$\sin y^{\circ} = \frac{6}{10} \rightarrow y = \sin^{-1} \left(\frac{6}{10}\right) \approx 36.87^{\circ}$
A sinusoidal (sin or cos) graph	$y = a \sin b(x + c) + d$
2 * amplitude amplitude	a – amplituda – 14 * distance from tan ta hattan
	a = amplitude = $\frac{1}{2}$ * distance from top to bottom b = $2\pi/(\text{pariod})$
	$b = 2\pi/(\text{period})$
	c = phase shift d = vertical shift
$\langle \cdot \cdot \rangle = \langle \cdot \cdot \rangle$	
	Know the graphs for $\mathbf{y} = \mathbf{sin} \mathbf{x}$ and $\mathbf{y} = \mathbf{cos} \mathbf{y}$.
Trigonometric identities	
	$\sin^2\theta + \cos^2\theta = 1$
	$\frac{\sin\theta}{\cos\theta} = \tan\theta$
	$\frac{\sin\theta}{\cos\theta} = \tan\theta$

Complex numbers	The powers of i:
	$i = \sqrt{-1}$
	$i^2 = -1$
	$i^2 = -1$ $i^3 = -i$ and the cycle repeats in sets of 4.
	$i^4 = 1$
	Complex numbers are expressed in the form $x + iy$ They may be graphed as (x, y) . They have magnitude
	They may be graphed as (x, y). They have magnitude $\sqrt{\frac{2}{2}}$
	$\sqrt{x^2 + y^2} \ .$
Two-way Tables – Probability when no event is	If no event is given, determine the probability based on
given.	the total count.
Two-way Tables – Probability when an event is	If an event is given , circle the corresponding row/column.
given. Exponents (converting to logarithm form)	Determine the row/column probability.
Exponents (converting to logarithm form)	The base of the logarithm is the base of the exponential. The value to which the logarithm is equal is the exponent.
Remember: logarithms work like exponents	The value to which the logarithm is equal is the exponent. The value that the logarithm operates on is the "number."
<u>Remember</u> . logaritimis work like exponents	Thus, the exponential form is $base^{exponent} = number$
	Thus, the exponential form is base – number
	Example: $3^2 = 9 \Longrightarrow \log_3 9 = 2$
Exponents (simplification rules)	Multiplying exponentials \rightarrow adding exponents
Remember: logarithms work like exponents	• Example: $2^3 \cdot 2^4 = 2^{3+4}$
<u>Remember</u> . logar times work like exponents	Dividing exponentials \rightarrow subtracting exponents
	• Example: $\frac{2^5}{2^3} = 2^{5-3}$
	Raising a power to a power \rightarrow multiplying exponents
	• Example: $(2^2)^3 = 2^{2 \cdot 3}$
Logarithms (converting to exponential form)	The base of the logarithm is the base of the exponential.
	The value to which the logarithm is equal is the exponent.
Remember: logarithms work like exponents	The value that the logarithm operates on is the "number."
	Thus, the exponential form is $base^{exponent} = number$
	Example: $\log_3 9 = 2 \Longrightarrow 3^2 = 9$
Logarithms (simplification rules)	Adding logarithms \rightarrow logarithm of the product
	• Example: $\log 3 + \log 5 = \log (3 * 5) = \log 15$
<u>Remember</u> : logarithms work like exponents	Subtracting logarithms \rightarrow logarithm of the quotient
	• Example: $\log 15 - \log 5 = \log (15/5) = \log 3$
	Logarithm of a power \rightarrow product of the power and the
	logarithm Γ
	• Example: $\log_3 5^2 = 2\log_3 5$